Natural Machines

Speaker: Benjamin Hollinger
Chair: Quan Nguyen
Supervisor: Patrick Gebhard

Advances in Human-Computer Interaction
WS 2007/08
Contents

• Introduction
• Classes of social robots
• Methodology
• Realizations
 − Kismet
 − COG
• Conclusions
Introduction

- Growing number of service robots
Introduction

- Growing number of service robots
- Tasks become more and more complex
Introduction

- Growing number of service robots
- Tasks become more and more complex
 => Robots become more and more complex
Introduction

- Growing number of service robots
- Tasks become more and more complex
 => Robots become more and more complex
- How can untrained users interface with these sophisticated devices in an
Introduction

- Growing number of service robots
- Tasks become more and more complex
 => Robots become more and more complex
- How can untrained users interface with these sophisticated devices in an
 - intuitive,
Introduction

• Growing number of service robots
• Tasks become more and more complex
 => Robots become more and more complex
• How can untrained users interface with these sophisticated devices in an
 - intuitive,
 - efficient
Introduction

- Growing number of service robots
- Tasks become more and more complex
 => Robots become more and more complex
- How can untrained users interface with these sophisticated devices in an
 - intuitive,
 - efficient and
 - enjoyable way?
Introduction

• Growing number of service robots
• Tasks become more and more complex
 => Robots become more and more complex
• How can untrained users interface with these sophisticated devices in an
 − intuitive,
 − efficient and
 − enjoyable way?
• Answer: Socially intelligent robots.
Classes of social robots

- Socially evocative
 - Easy to anthropomorphize
 - Evoke feelings in users
Classes of social robots

- **Socially evocative**
 - Easy to anthropomorphize
 - Evoke feelings in users
- **Social interface**
 - Provide a natural interface
 - No deep cognition model required
Classes of social robots

- Socially evocative
 - Easy to anthropomorphize
 - Evoke feelings in users
- Social interface
 - Provide a natural interface
 - No deep cognition model required
- Socially receptive
 - Passive as social actors
 - Can benefit from social interactions
 - Learn by imitation
Classes of social robots (cont.)

- Sociable
 - Pro-active social actors
 - Possess social goals, drives and emotions
 - Usually incorporate a deep model of social cognition.
Methodology - Goals

- Human-oriented perception
 - Detect and interpret human behaviour
 - Recognizing gestures, activity and intent
Methodology - Goals

- Human-oriented perception
 - Detect and interpret human behaviour
 - Recognizing gestures, activity and intent
- Natural human-robot interaction
 - Establish appropriate social expectations
 - Follow social conventions and norms
Methodology - Goals

- **Human-oriented perception**
 - Detect and interpret human behaviour
 - Recognizing gestures, activity and intent

- **Natural human-robot interaction**
 - Establish appropriate social expectations
 - Follow social conventions and norms

- **Readable social cues**
 - Provide feedback of its emotional state
 - Intuitive, transparent interface
Methodology - Goals

- Human-oriented perception
 - Detect and interpret human behaviour
 - Recognizing gestures, activity and intent
- Natural human-robot interaction
 - Establish appropriate social expectations
 - Follow social conventions and norms
- Readable social cues
 - Provide feedback of its emotional state
 - Intuitive, transparent interface
- Real-time performance
 - On par with human performance
 - No “loading times”
Methodology – Primary Designs

- Biologically inspired
 - Designed after biological systems
 - Implements drives, emotions, behaviour and motor systems as found in nature
 - Realizes believable social behaviour from “ground up”
Methodology – Primary Designs

- **Biologically inspired**
 - Designed after biological systems
 - Implements drives, emotions, behaviour and motor systems as found in nature
 - Realizes believable social behaviour from “ground up”

- **Functionally designed**
 - No deeper model for cognition
 - Robot has a function and uses social behaviour mainly as interface
 - “Shallow” cognition
 - Robot is “faking it”
Methodology - Embodiment

- Measured in possible interactions with the world
Methodology - Embodiment

- Measured in possible interactions with the world
- Sets expectations (form suggests function)
Methodology - Embodiment

- Measured in possible interactions with the world
- Sets expectations (form suggests function)
- Different types
Methodology - Embodiment

- Measured in possible interactions with the world
- Sets expectations (form suggests function)
- Different types
 - Anthropomorphic
Methodology - Embodiment

- Measured in possible interactions with the world
- Sets expectations (form suggests function)
- Different types
 - Anthropomorphic
 - Human-like form
Methodology - Embodiment

- Measured in possible interactions with the world
- Sets expectations (form suggests function)
- Different types
 - Anthropomorphic
 - Human-like form
 - Best suited for human-robot social interaction
Methodology - Embodiment

- Measured in possible interactions with the world
- Sets expectations (form suggests function)
- Different types
 - Anthropomorphic
 - Human-like form
 - Best suited for human-robot social interaction
 - Zoomorphic
Methodology - Embodiment

- Measured in possible interactions with the world
- Sets expectations (form suggests function)
- Different types
 - Anthropomorphomorphic
 - Human-like form
 - Best suited for human-robot social interaction
 - Zoomorphomorphic
 - Form imitates animal
Methodology - Embodiment

- Measured in possible interactions with the world
- Sets expectations (form suggests function)
- Different types
 - Anthropomorphic
 - Human-like form
 - Best suited for human-robot social interaction
 - Zoomorphic
 - Form imitates animal
 - Indicates pet-owner relation
Methodology - Embodiment

- Measured in possible interactions with the world
- Sets expectations (form suggests function)
- Different types
 - Anthropomorphic
 - Human-like form
 - Best suited for human-robot social interaction
 - Zoomorphic
 - Form imitates animal
 - Indicates pet-owner relation
 - Makes peer-to-peer interaction difficult
Methodology - Embodiment

- Caricatured
 - Exaggerates one or more physical feature
 - Good for implying a certain function or ability
 - Makes it easy to interact with in a playful manner
 - No danger of falling into the “Uncanny Valley” [1]

Methodology - Embodiment

- Caricatured
 - Exaggerates one or more physical feature
 - Good for implying a certain function or ability
 - Makes it easy to interact with in a playful manner
 - No danger of falling into the “Uncanny Valley” [1]

Methodology - Embodiment

- **Caricatured**
 - Exaggerates one or more physical feature
 - Good for implying a certain function or ability
 - Makes it easy to interact with in a playful manner
 - No danger of falling into the “Uncanny Valley” [1]

Methodology - Embodiment

- Caricatured
 - Exaggerates one or more physical feature
 - Good for implying a certain function or ability
 - Makes it easy to interact with in a playful manner
 - No danger of falling into the “Uncanny Valley” [1]

Methodology - Embodiment

- Caricatured
 - Exaggerates one or more physical feature
 - Good for implying a certain function or ability
 - Makes it easy to interact with in a playful manner
 - No danger of falling into the “Uncanny Valley” [1]

Methodology - Embodiment

- **Caricatured**
 - Exaggerates one or more physical feature
 - Good for implying a certain function or ability
 - Makes it easy to interact with in a playful manner
 - No danger of falling into the “Uncanny Valley” [1]

- **Functional**
 - Function dictates form
 - No realistic form desired

Methodology - Personality

- Expressed via the “Big Five” model
Methodology - Personality

- Expressed via the “Big Five” model
 - Agreeableness
 - Conscientiousness
 - Extroversion
 - Openness
 - Neuroticism
Methodology - Personality

- Expressed via the “Big Five” model
 - Agreeableness
 - Conscientiousness
 - Extroversion
 - Openness
 - Neuroticism

- Five common archetypes:
Methodology - Personality

- Expressed via the “Big Five” model
 - Agreeableness
 - Conscientiousness
 - Extroversion
 - Openness
 - Neuroticism

- Five common archetypes:
 - Tool-like
Methodology - Personality

- Expressed via the “Big Five” model
 - Agreeableness
 - Conscientiousness
 - Extroversion
 - Openness
 - Neuroticism

- Five common archetypes:
 - Tool-like
 - Pet or Creature
Methodology - Personality

- Expressed via the “Big Five” model
 - Agreeableness
 - Conscientiousness
 - Extroversion
 - Openness
 - Neuroticism

- Five common archetypes:
 - Tool-like
 - Pet or Creature
 - Cartoon
Methodology - Personality

- Expressed via the “Big Five” model
 - Agreeableness
 - Conscientiousness
 - Extroversion
 - Openness
 - Neuroticism

- Five common archetypes:
 - Tool-like
 - Pet or Creature
 - Cartoon
 - Artificial Being
Methodology - Personality

- Expressed via the “Big Five” model
 - Agreeableness
 - Conscientiousness
 - Extroversion
 - Openness
 - Neuroticism

- Five common archetypes:
 - Tool-like
 - Pet or Creature
 - Cartoon
 - Artificial Being
 - Human-like
Methodology - Emotions

- Described as
Methodology - Emotions

• Described as
 • Discrete categories (OCC-Model [1], Ekman's Basics[2])
 • A point in a dimensional space (Valence, Arousal)
 • Both

Methodology - Emotions

- Described as
 - Discrete categories (OCC-Model \[1\], Ekman's Basics\[2\])
 - A point in a dimensional space (Valence, Arousal)
 - Both

- Communicated via

\[1\] Ortony, Clore, Collins 1988
\[2\] Ekman 1972
Methodology - Emotions

- Described as
 - Discrete categories (OCC-Model [1], Ekman's Basics[2])
 - A point in a dimensional space (Valence, Arousal)
 - Both

- Communicated via
 - Speech
 - Facial Expression
 - Body Language

[1] Ortony, Clore, Collins 1988
[2] Ekman 1972
Methodology - Emotions

- Described as
 - Discrete categories (OCC-Model [1], Ekman's Basics[2])
 - A point in a dimensional space (Valence, Arousal)
 - Both

- Communicated via
 - Speech
 - Facial Expression
 - Body Language

- Used as

Methodology - Emotions

- Described as
 - Discrete categories (OCC-Model \[1\], Ekman's Basics\[2\])
 - A point in a dimensional space (Valence, Arousal)
 - Both

- Communicated via
 - Speech
 - Facial Expression
 - Body Language

- Used as
 - Control mechanism for behaviour and feedback
 - Different behaviour in different moods (sad, happy)

\[1\] Ortony, Clore, Collins 1988
\[2\] Ekman 1972
Methodology - Communication

- Low-level
Methodology - Communication

- Low-level
 - Simple / synthetic words or symbols
 - utterances
Methodology - Communication

- Low-level
 - Simple / synthetic words or symbols
 - utterances
- Non-verbal
Methodology - Communication

- Low-level
 - Simple / synthetic words or symbols
 - utterances
- Non-verbal
 - Body language
 - Physical actions to communicate (Pointing,...)
 - Is a useful alternative
Methodology - Communication

- **Low-level**
 - Simple / synthetic words or symbols
 - utterances

- **Non-verbal**
 - Body language
 - Physical actions to communicate (Pointing,...)
 - Is a useful alternative

- **Natural Language**
Methodology - Communication

- **Low-level**
 - Simple / synthetic words or symbols
 - utterances

- **Non-verbal**
 - Body language
 - Physical actions to communicate (Pointing,...)
 - Is a useful alternative

- **Natural Language**
 - High-level speech
 - Clearly the most intuitive
 - Hard to realize
Methodology - Perception

• Conventional goals:
Methodology - Perception

- Conventional goals:
 - Localization
 - Navigation
 - Obstacle avoidance
Methodology - Perception

• Conventional goals:
 • Localization
 • Navigation
 • Obstacle avoidance

• Interaction with humans requires a similar perception of the world around them
Methodology - Perception

- Conventional goals:
 - Localization
 - Navigation
 - Obstacle avoidance

- Interaction with humans requires a similar perception of the world around them

- Human-oriented goals:
Methodology - Perception

- Conventional goals:
 - Localization
 - Navigation
 - Obstacle avoidance
- Interaction with humans requires a similar perception of the world around them
- Human-oriented goals:
 - Feature-tracking (Face, Body, Hands)
Methodology - Perception

- **Conventional goals:**
 - Localization
 - Navigation
 - Obstacle avoidance

- **Interaction with humans requires a similar perception of the world around them**

- **Human-oriented goals:**
 - Feature-tracking (Face, Body, Hands)
 - Feature-interpretation (Gestures, facial expressions,..)
Methodology - Perception

- Conventional goals:
 - Localization
 - Navigation
 - Obstacle avoidance

- Interaction with humans requires a similar perception of the world around them

- Human-oriented goals:
 - Feature-tracking (Face, Body, Hands)
 - Feature-interpretation (Gestures, facial expressions,..)
 - Speech-interpretation (affective, commands,...)
Methodology (cont.)

- User modeling
Methodology (cont.)

- User modeling
 - Enables more sophisticated reaction to user and user behavior
Methodology (cont.)

- User modeling
 - Enables more sophisticated reaction to user and user behavior
 - Several methods of user modeling (quantitative, qualitative, static, dynamic)
Methodology (cont.)

• User modeling
 − Enables more sophisticated reaction to user and user behavior
 − Several methods of user modeling (quantitative, qualitative, static, dynamic)

• Intentionality
Methodology (cont.)

- **User modeling**
 - Enables more sophisticated reaction to user and user behavior
 - Several methods of user modeling (quantitative, qualitative, static, dynamic)
- **Intentionality**
 - Attention (shared attention, object tracking)
Methodology (cont.)

• User modeling
 – Enables more sophisticated reaction to user and user behavior
 – Several methods of user modeling (quantitative, qualitative, static, dynamic)

• Intentionality
 – Attention (shared attention, object tracking)
 – Expression (goal-directed behaviour,...)
Methodology (cont.)

- **User modeling**
 - Enables more sophisticated reaction to user and user behavior
 - Several methods of user modeling (quantitative, qualitative, static, dynamic)

- **Intentionality**
 - Attention (shared attention, object tracking)
 - Expression (goal-directed behaviour,...)

- **Socially situated learning**
Methodology (cont.)

- **User modeling**
 - Enables more sophisticated reaction to user and user behavior
 - Several methods of user modeling (quantitative, qualitative, static, dynamic)

- **Intentionality**
 - Attention (shared attention, object tracking)
 - Expression (goal-directed behaviour,...)

- **Socially situated learning**
 - Most common: Imitation
Methodology (cont.)

- **User modeling**
 - Enables more sophisticated reaction to user and user behavior
 - Several methods of user modeling (quantitative, qualitative, static, dynamic)

- **Intentionality**
 - Attention (shared attention, object tracking)
 - Expression (goal-directed behaviour, ...)

- **Socially situated learning**
 - Most common: Imitation
 - Open questions (When? What? How to integrate? How to evaluate?)
Realizations - Kismet
Kismet - Overview

- Developed at MIT
Kismet - Overview

- Developed at MIT
- Sociable Robot in the role of an infant with
Kismet - Overview

- Developed at MIT
- Sociable Robot in the role of an infant with
 - Models for
 - Drives
 - Emotions
 - Behaviour
Kismet - Overview

- Developed at MIT
- Sociable Robot in the role of an infant with
 - Models for
 - Drives
 - Emotions
 - Behaviour
 - The ability to communicate its current emotional state via facial expressions.
Kismet - Drives

- Kismet is driven by three motivations:
Kismet - Drives

- Kismet is driven by three motivations:
 - Social drive (Interact with people)
Kismet - Drives

• Kismet is driven by three motivations:
 – Social drive (Interact with people)
 – Stimulation drive (Play with toys)
Kismet - Drives

- Kismet is driven by three motivations:
 - Social drive (Interact with people)
 - Stimulation drive (Play with toys)
 - Fatigue drive (Rest)
Kismet - Drives

• Kismet is driven by three motivations:
 − Social drive (Interact with people)
 − Stimulation drive (Play with toys)
 − Fatigue drive (Rest)

• A drive can either be in a
Kismet - Drives

• Kismet is driven by three motivations:
 - Social drive (Interact with people)
 - Stimulation drive (Play with toys)
 - Fatigue drive (Rest)

• A drive can either be in a
 - Overwhelmed state
Kismet - Drives

• Kismet is driven by three motivations:
 − Social drive (Interact with people)
 − Stimulation drive (Play with toys)
 − Fatigue drive (Rest)

• A drive can either be in a
 − Overwhelmed state
 − Homeostatic state
Kismet - Drives

- Kismet is driven by three motivations:
 - Social drive (Interact with people)
 - Stimulation drive (Play with toys)
 - Fatigue drive (Rest)

- A drive can either be in a
 - Overwhelmed state
 - Homeostatic state
 - Under-stimulated state
Kismet - Drives

- Kismet is driven by three motivations:
 - Social drive (Interact with people)
 - Stimulation drive (Play with toys)
 - Fatigue drive (Rest)
- A drive can either be in a
 - Overwhelmed state
 - Homeostatic state
 - Under-stimulated state
- Directly affect emotions and behaviour.
Kismet - Emotions

- Emotional state is represented as a point in an affect space along three dimensions

[1]
Kismet - Emotions

- Emotional state is represented as a point in an affect space along three dimensions.
- Affect space is divided into regions.
Kismet - Emotions

- Emotional state is represented as a point in an affect space \(^{[1]}\) along three dimensions
- Affect space is divided into regions
- Position in affect space directly influenced by drive saturation.

\[^{1}\] Breazeal 1999
Kismet - Behaviour

- Chosen behaviour influenced by
Kismet - Behaviour

- Chosen behaviour influenced by
 - Drive saturation
Kismet - Behaviour

- Chosen behaviour influenced by
 - Drive saturation,
 - Emotional state
Kismet - Behaviour

• Chosen behaviour influenced by
 - Drive saturation,
 - Emotional state,
 - Perceived environment
Kismet - Behaviour

- Chosen behaviour influenced by
 - Drive saturation,
 - Emotional state,
 - Perceived environment
- Behaviours are organized in a hierarchy with three levels
Chosen behaviour influenced by
- Drive saturation,
- Emotional state,
- Perceived environment

Behaviours are organized in a hierarchy with three levels:
- Global task level
Kismet - Behaviour

• Chosen behaviour influenced by
 - Drive saturation,
 - Emotional state,
 - Perceived environment

• Behaviours are organized in a hierarchy with three levels:
 - Global task level
 - Strategy level (prioritized by drive and emotional state)
Kismet - Behaviour

• Chosen behaviour influenced by
 − Drive saturation,
 − Emotional state,
 − Perceived environment

• Behaviours are organized in a hierarchy with three levels:
 − Global task level
 − Strategy level (prioritized by drive and emotional state)
 − Sub-Task level (expressive output)
Kismet – Behaviour (cont.)
Kismet – Behaviour (cont.)
Kismet – Behaviour (cont.)
Kismet – Behaviour (cont.)
Kismet – Facial Expressions

- Kismet has a 15 Degree-of-Freedom face
Kismet – Facial Expressions

- Kismet has a 15 Degree-of-Freedom face
 - Eyelids
 - Eyebrows
 - Ears
 - Lips
Kismet – Facial Expressions

- Kismet has a 15 Degree-of-Freedom face
 - Eyelids
 - Eyebrows
 - Ears
 - Lips
Kismet – Facial Expressions

- Kismet has a 15 Degree-of-Freedom face
 - Eyelids
 - Eyebrows
 - Ears
 - Lips
Kismet – Facial Expressions

- Kismet has a 15 Degree-of-Freedom face
 - Eyelids
 - Eyebrows
 - Ears
 - Lips

- Each region in the affect space has a corresponding facial expression.
Kismet – Emotion-to-face
Realizations - COG
COG - Overview

- Developed at MIT
COG - Overview

- Developed at MIT
- Goal: Human likeness
COG - Overview

- Developed at MIT
- Goal: Human likeness
- Some of COG's abilities:
COG - Overview

- Developed at MIT
- Goal: Human likeness
- Some of COG's abilities:
 - Human-like eye movements
COG - Overview

- Developed at MIT
- Goal: Human likeness
- Some of COG's abilities:
 - Human-like eye movements
 - Saccades (rapid eye movement)
 - Moving target tracking
 - Maintaining eye fixation when head or torso are moving
COG - Overview

- Developed at MIT
- Goal: Human likeness
- Some of COG's abilities:
 - Human-like eye movements
 - Saccades (rapid eye movement)
 - Moving target tracking
 - Maintaining eye fixation when head or torso are moving
 - Face and eye detection
COG - Overview

- Developed at MIT
- Goal: Human likeness
- Some of COG's abilities:
 - Human-like eye movements
 - Saccades (rapid eye movement)
 - Moving target tracking
 - Maintaining eye fixation when head or torso are moving
 - Face and eye detection
 - Imitating someone's nodding or head shaking
 - Gaze tracking
COG - Overview

• Developed at MIT
• Goal: Human likeness
• Some of COG's abilities:
 - Human-like eye movements
 • Saccades (rapid eye movement)
 • Moving target tracking
 • Maintaining eye fixation when head or torso are moving
 - Face and eye detection
 • Imitating someone's nodding or head shaking
 • Gaze tracking
 - Incremental learning:
COG - Overview

• Developed at MIT
• Goal: Human likeness
• Some of COG's abilities:
 - Human-like eye movements
 • Saccades (rapid eye movement)
 • Moving target tracking
 • Maintaining eye fixation when head or torso are moving
 - Face and eye detection
 • Imitating someone's nodding or head shaking
 • Gaze tracking
 - Incremental learning:
 • Break tasks down to atomic actions
 • Combine task to more complex tasks
COG - Learning

- How to grasp an object (~ 2000 tries):
• Learning similar in social contexts
• Learning similar in social contexts
• Basic social interaction: Shared attention
COG – Learning (cont.)

- Learning similar in social contexts
- Basic social interaction: Shared attention
 - Breaks down to
Learning similar in social contexts

Basic social interaction: Shared attention
 - Breaks down to
 • Hold gaze
 - Detect face
 - Detect eyes
 - Move head to meet gaze
• Learning similar in social contexts
• Basic social interaction: Shared attention
 - Breaks down to
 • Hold gaze
 - Detect face
 - Detect eyes
 - Move head to meet gaze
 • Follow gaze to object of interest
 - Find angle of gaze
 - Extrapolate object from angle of gaze
 - Move head to object of interest
• Learning similar in social contexts
• Basic social interaction: Shared attention
 - Breaks down to
 • Hold gaze
 - Detect face
 - Detect eyes
 - Move head to meet gaze
 • Follow gaze to object of interest
 - Find angle of gaze
 - Extrapolate object from angle of gaze
 - Move head to object of interest
 - Can be learned incrementally
Conclusions

• The most important design issue is to convey intentionality
 - Peer-to-peer social interaction
 - Mutually shared control
• Kismet successfully implements a model for drives and emotions
• COG's incremental learning ability is a basis for a human-like perception of the world
• Research has still a long way to go